1.Loss Function
multiclass svm loss
data loss / regularization / occam's Razor
L1/L2 Regularization
softmax classifier(Multinomial Logistic Regression)
unnormalized probabilities
matrix multiply + bias effect / hinge loss(svm), cross-entropy loss(softmax)
softmax vs SVM
Recap - score function / loss function
2.Optimization
1)random search
2)follow the slope - derivative, calculus, analytic gradient
numerical gradient vs analytic gradient
stocastic gradient descent(SGD) - mini batch
image features - motivation,
feature transform,
color histogram,
histogram of oriented gradients(HoG)
Bag of Words
Image features vs ConvNets
feature extraction
'AIFFEL 대전 > CS231N' 카테고리의 다른 글
K-NearestNeighbor (0) | 2021.01.05 |
---|---|
lecture2 linear classifier (0) | 2021.01.03 |
lecture2 이미지 분류의 어려움, 과거의 방식 (0) | 2021.01.03 |
lecture2 분류와 유사성 (0) | 2021.01.03 |
lecture2 preview, keyword (0) | 2021.01.02 |