본문으로 바로가기

lecture3 preview, keyword

category AIFFEL 대전/CS231N 2021. 1. 2. 14:04

1.Loss Function

 

multiclass svm loss

data loss / regularization / occam's Razor

L1/L2 Regularization

softmax classifier(Multinomial Logistic Regression)

unnormalized probabilities

matrix multiply + bias effect / hinge loss(svm), cross-entropy loss(softmax)

softmax vs SVM

Recap - score function / loss function

 

2.Optimization

 

1)random search

2)follow the slope - derivative, calculus, analytic gradient

numerical gradient vs analytic gradient

stocastic gradient descent(SGD) - mini batch

image features - motivation,

  feature transform,

  color histogram, 

  histogram of oriented gradients(HoG)

  Bag of Words

Image features vs ConvNets

  feature extraction

 

'AIFFEL 대전 > CS231N' 카테고리의 다른 글

K-NearestNeighbor  (0) 2021.01.05
lecture2 linear classifier  (0) 2021.01.03
lecture2 이미지 분류의 어려움, 과거의 방식  (0) 2021.01.03
lecture2 분류와 유사성  (0) 2021.01.03
lecture2 preview, keyword  (0) 2021.01.02