lecture2 preview, keyword
수업 후에 프리뷰를 적어 이상하지만, 키워드 일단 적어보자
lecture2. Image Classification Pipeline
python / numpy tutorial
1.Image Classification
sementic gap : human vision vs digital image data
challenges
- viewpoint variation
- illumination
- deformation
- occulusion
- background clutter
- interclass variation
An image classifer(Recognition)
- no obvious way of hard-code
- edge/corner
- Data Driven Approach
1st classifier : K-NN, Nearest Neighbor(memorize / predict)
- dataset : CIFAR10
- Distance Metric to compare image : L1/L2 distance metric
- L1 distance
- time complexity O(1), O(N)
- hyperparameter : best k/distance choice, problem dependent
- dataset : train/validation/test
- k-fold validation
- knn - image never used(curse of dimensionality)
Linear classification
- parametric approach
- hard case
- defined score function